3.6.62 \(\int \frac {x^2}{a+b x^n+c x^{2 n}} \, dx\) [562]

Optimal. Leaf size=140 \[ -\frac {2 c x^3 \, _2F_1\left (1,\frac {3}{n};\frac {3+n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}\right )}{3 \left (b^2-4 a c-b \sqrt {b^2-4 a c}\right )}-\frac {2 c x^3 \, _2F_1\left (1,\frac {3}{n};\frac {3+n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{3 \left (b^2-4 a c+b \sqrt {b^2-4 a c}\right )} \]

[Out]

-2/3*c*x^3*hypergeom([1, 3/n],[(3+n)/n],-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)))/(b^2-4*a*c-b*(-4*a*c+b^2)^(1/2))-2/3*
c*x^3*hypergeom([1, 3/n],[(3+n)/n],-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))/(b^2-4*a*c+b*(-4*a*c+b^2)^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {1397, 371} \begin {gather*} -\frac {2 c x^3 \, _2F_1\left (1,\frac {3}{n};\frac {n+3}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}\right )}{3 \left (-b \sqrt {b^2-4 a c}-4 a c+b^2\right )}-\frac {2 c x^3 \, _2F_1\left (1,\frac {3}{n};\frac {n+3}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{3 \left (b \sqrt {b^2-4 a c}-4 a c+b^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(a + b*x^n + c*x^(2*n)),x]

[Out]

(-2*c*x^3*Hypergeometric2F1[1, 3/n, (3 + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])])/(3*(b^2 - 4*a*c - b*Sqrt[b
^2 - 4*a*c])) - (2*c*x^3*Hypergeometric2F1[1, 3/n, (3 + n)/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(3*(b^2 - 4
*a*c + b*Sqrt[b^2 - 4*a*c]))

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 1397

Int[((d_.)*(x_))^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Dist[2*(c/q), Int[(d*x)^m/(b - q + 2*c*x^n), x], x] - Dist[2*(c/q), Int[(d*x)^m/(b + q + 2*c*x^n), x], x]]
/; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{a+b x^n+c x^{2 n}} \, dx &=\frac {(2 c) \int \frac {x^2}{b-\sqrt {b^2-4 a c}+2 c x^n} \, dx}{\sqrt {b^2-4 a c}}-\frac {(2 c) \int \frac {x^2}{b+\sqrt {b^2-4 a c}+2 c x^n} \, dx}{\sqrt {b^2-4 a c}}\\ &=-\frac {2 c x^3 \, _2F_1\left (1,\frac {3}{n};\frac {3+n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}\right )}{3 \left (b^2-4 a c-b \sqrt {b^2-4 a c}\right )}-\frac {2 c x^3 \, _2F_1\left (1,\frac {3}{n};\frac {3+n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{3 \left (b^2-4 a c+b \sqrt {b^2-4 a c}\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.50, size = 265, normalized size = 1.89 \begin {gather*} -\frac {2}{3} c x^3 \left (\frac {1-\left (\frac {x^n}{-\frac {-b+\sqrt {b^2-4 a c}}{2 c}+x^n}\right )^{-3/n} \, _2F_1\left (-\frac {3}{n},-\frac {3}{n};\frac {-3+n}{n};\frac {b-\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}+2 c x^n}\right )}{b^2-4 a c-b \sqrt {b^2-4 a c}}+\frac {1-8^{-1/n} \left (\frac {c x^n}{b+\sqrt {b^2-4 a c}+2 c x^n}\right )^{-3/n} \, _2F_1\left (-\frac {3}{n},-\frac {3}{n};\frac {-3+n}{n};\frac {b+\sqrt {b^2-4 a c}}{b+\sqrt {b^2-4 a c}+2 c x^n}\right )}{\sqrt {b^2-4 a c} \left (b+\sqrt {b^2-4 a c}\right )}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + b*x^n + c*x^(2*n)),x]

[Out]

(-2*c*x^3*((1 - Hypergeometric2F1[-3/n, -3/n, (-3 + n)/n, (b - Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c] + 2*c
*x^n)]/(x^n/(-1/2*(-b + Sqrt[b^2 - 4*a*c])/c + x^n))^(3/n))/(b^2 - 4*a*c - b*Sqrt[b^2 - 4*a*c]) + (1 - Hyperge
ometric2F1[-3/n, -3/n, (-3 + n)/n, (b + Sqrt[b^2 - 4*a*c])/(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)]/(8^n^(-1)*((c*x^
n)/(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n))^(3/n)))/(Sqrt[b^2 - 4*a*c]*(b + Sqrt[b^2 - 4*a*c]))))/3

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \frac {x^{2}}{a +b \,x^{n}+c \,x^{2 n}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*x^n+c*x^(2*n)),x)

[Out]

int(x^2/(a+b*x^n+c*x^(2*n)),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*x^n+c*x^(2*n)),x, algorithm="maxima")

[Out]

integrate(x^2/(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*x^n+c*x^(2*n)),x, algorithm="fricas")

[Out]

integral(x^2/(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{a + b x^{n} + c x^{2 n}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*x**n+c*x**(2*n)),x)

[Out]

Integral(x**2/(a + b*x**n + c*x**(2*n)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*x^n+c*x^(2*n)),x, algorithm="giac")

[Out]

integrate(x^2/(c*x^(2*n) + b*x^n + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2}{a+b\,x^n+c\,x^{2\,n}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a + b*x^n + c*x^(2*n)),x)

[Out]

int(x^2/(a + b*x^n + c*x^(2*n)), x)

________________________________________________________________________________________